Analysis of a Biologically-Inspired System for Real-time Object Recognition

نویسندگان

  • Erik Murphy-Chutorian
  • Sarah Aboutalib
  • Jochen Triesch
چکیده

We present a biologically-inspired system for real-time, feed-forward object recognition in cluttered scenes. Our system utilizes a vocabulary of very sparse features that are shared between and within different object models. To detect objects in a novel scene, these features are located in the image, and each detected feature votes for all objects that are consistent with its presence. Due to the sharing of features between object models our approach is more scalable to large object databases than traditional methods. To demonstrate the utility of this approach, we train our system to recognize any of 50 objects in everyday cluttered scenes with substantial occlusion. Without further optimization we also demonstrate near-perfect recognition on a standard 3-D recognition problem. Our system has an interpretation as a sparsely connected feed-forward neural network, making it a viable model for fast, feed-forward object recognition in the primate visual system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طراحی و پیاده‌سازی سامانۀ بی‌درنگ آشکارسازی و شناسایی پلاک خودرو در تصاویر ویدئویی

An automatic Number Plate Recognition (ANPR) is a popular topic in the field of image processing and is considered from different aspects, since early 90s. There are many challenges in this field, including; fast moving vehicles, different viewing angles and different distances from camera, complex and unpredictable backgrounds, poor quality images, existence of multiple plates in the scene, va...

متن کامل

Design of a Pixel-parallel Feature Extraction Vlsi System for Biologically-inspired Object Recognition Methods

This paper proposes a biologically-inspired feature extraction method, which consists of coarse region segmentation by a resistive-fuse network and feature extraction by Gabor wavelet transforms. Their pixel-parallel VLSI implementation based on the pulse modulation circuit architecture is described, and measurement results of Gabor filter operation by a test LSI chip with 1-D 20-pixels are pre...

متن کامل

Low Cost UAV-based Remote Sensing for Autonomous Wildlife Monitoring

In recent years, developments in unmanned aerial vehicles, lightweight on-board computers, and low-cost thermal imaging sensors offer a new opportunity for wildlife monitoring. In contrast with traditional methods now surveying endangered species to obtain population and location has become more cost-effective and least time-consuming. In this paper, a low-cost UAV-based remote sensing platform...

متن کامل

Design-Space Exploration of Biologically-Inspired Visual Object Recognition Algorithms Using CPUs, GPUs, and FPGAs

In recent years, biologically-inspired visual object recognition algorithms – those that aim to mirror the computations performed by the brain's visual system – have emerged as exceptionally promising candidates in object and face recognition research, achieving impressive performance on a range of object and face recognition tasks. While these algorithms typically require a large number of ope...

متن کامل

An Evaluation of the Invariance Properties of a Biologically-Inspired System for Unconstrained Face Recognition

A key challenge in building face recognition systems — biologically-inspired or otherwise — is evaluating performance. While much of face recognition research has traditionally used posed photographs for evaluation, recent efforts have emerged to build more naturalistic, unconstrained test sets by collecting large numbers of face images from the internet (e.g. the “Labeled Faces in the Wild”(LF...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005